Natural Language Inference Fine Tuner¶
Bases: OpenAIFineTuner
A bolt for fine-tuning OpenAI models for commonsense reasoning tasks.
This bolt uses the OpenAI API to fine-tune a pre-trained model for commonsense reasoning.
CLI Usage:
genius HuggingFaceCommonsenseReasoningFineTuner rise \
batch \
--input_s3_bucket geniusrise-test \
--input_s3_folder train \
batch \
--output_s3_bucket geniusrise-test \
--output_s3_folder model \
fine_tune \
--args model_name=my_model tokenizer_name=my_tokenizer num_train_epochs=3 per_device_train_batch_size=8
YAML Configuration:
version: "1"
bolts:
my_fine_tuner:
name: "HuggingFaceCommonsenseReasoningFineTuner"
method: "fine_tune"
args:
model_name: "my_model"
tokenizer_name: "my_tokenizer"
num_train_epochs: 3
per_device_train_batch_size: 8
data_max_length: 512
input:
type: "batch"
args:
bucket: "my_bucket"
folder: "my_dataset"
output:
type: "batch"
args:
bucket: "my_bucket"
folder: "my_model"
deploy:
type: k8s
args:
kind: deployment
name: my_fine_tuner
context_name: arn:aws:eks:us-east-1:genius-dev:cluster/geniusrise-dev
namespace: geniusrise
image: geniusrise/geniusrise
kube_config_path: ~/.kube/config
Supported Data Formats
- JSONL
- CSV
- Parquet
- JSON
- XML
- YAML
- TSV
- Excel (.xls, .xlsx)
- SQLite (.db)
- Feather
load_dataset(dataset_path, **kwargs)
¶
Load a commonsense reasoning dataset from a directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_path |
str
|
The path to the dataset directory. |
required |
**kwargs |
Any
|
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Dataset |
Union[Dataset, DatasetDict, Optional[Dataset]]
|
The loaded dataset. |
Raises:
Type | Description |
---|---|
Exception
|
If there was an error loading the dataset. |
Supported Data Formats and Structures:¶
Hugging Face Dataset¶
Dataset files saved by the Hugging Face datasets library.
JSONL¶
Each line is a JSON object representing an example.
CSV¶
Should contain 'premise', 'hypothesis', and 'label' columns.
Parquet¶
Should contain 'premise', 'hypothesis', and 'label' columns.
JSON¶
An array of dictionaries with 'premise', 'hypothesis', and 'label' keys.
XML¶
Each 'record' element should contain 'premise', 'hypothesis', and 'label' child elements.
YAML¶
Each document should be a dictionary with 'premise', 'hypothesis', and 'label' keys.
TSV¶
Should contain 'premise', 'hypothesis', and 'label' columns separated by tabs.
Excel (.xls, .xlsx)¶
Should contain 'premise', 'hypothesis', and 'label' columns.
SQLite (.db)¶
Should contain a table with 'premise', 'hypothesis', and 'label' columns.
Feather¶
Should contain 'premise', 'hypothesis', and 'label' columns.
prepare_fine_tuning_data(data, data_type)
¶
Prepare the given data for fine-tuning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Union[Dataset, DatasetDict, Optional[Dataset]]
|
The dataset to prepare. |
required |
data_type |
str
|
Either 'train' or 'eval' to specify the type of data. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If data_type is not 'train' or 'eval'. |